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TECHNICAL MEMORANINM 1394

AFLATWING WTI?HSHARP EDGES IN A SUPERSONIC STREAM*

By A. E. Donov

In this work there is given an approximate solution of the problem
two-dimensional steady supersonic stream of ideal gas, neglecting
conduction, flowing around .athin wing with shexp edges at small

angles of
along the

attack. (Determinationof the law of distr~but~on of pressure
wing, lifting force dnd head resistemce of the wing.)

PART I

The problem of the investigation of the mechanical action of a
moving gas on an imnovable wing appears as a special case of the some-
what more general problem of the investigation of the mechanical action
of a moving gas on sm imnovable fixed wall constraining the motion of
the gas. In our own explanation we begin with the formulation of this
last problem in which we confine ourselves only to the consideration of
the steady two-dimensional forces of ideal gases not subject to the action
of gravitational forces. In the phe of mation of the gas we shall
arrange an imnovable rectangular coordinate system in such a ~~er that
it is situated as in figure 1. We b.troduce three functions v, p, md p
of the independent vsriables x and y defined, respectively, as the veloc-
ity, density, and pressure. The vector functions ?will be determined by
a pair of scalar functions of the independent variables. For these func-
tions we shall agree to take either the functions Vx, Vy defined as the

projections of the velocity of the axis x and y, respectively, or the
functions v end ~, defined, respectively, as the absolute value of the
velocity and its angle with respect to the positive direction of the x-sxis,
measured in the countercloclmise sense. 3i-what follows we
to the consideration only of flows for which the function $
condition

limit ourselves’
satisfies the

(1)

*Izvestiia-Akademia,NAUK, USSR, 1939, pp 603-626.
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As is well known, the study of the gas motion under consideration
leads to the investigation of the following system of differential
equations

avx avx +lap ~—+VYF -—=
‘x ax p ax

avy 9+QE!=0—+vyay‘xZ3x P ay

a(pvx)~ mvy) ~

ax ‘=ay

(2)

Here k is the adiabatic exponent (for air k = l.~~). If the motion
of the gas is constrained by em immovable frictionless fixed wall in the
plane XOY, the gas will be adja:ent to it along soke curve. We shall
call this curve the ‘tcontourK.

Consider the unit vector~tangent to the.contour K directed in
such a manner that its projection on the x-axis is positive. Denote
by ~k the angle which it makes with the x-axis. Clearly Pk may be

regsrded as a function of t~e abscissa x of that point of the contour K
associated with the vector t. We denote this function by @k(x) and

assune that it is continuous. If the function ~k(X) is prescribed and,
moreover, the coordinates of any point of the contour K are given, hhe
form and position of the contwur is completely determined. We agree to
take as origin the left edge of the contour K. Then the equation of
this contour wLU. have the form

f

x
Y= tti ~k(x)dx

o
(3)

I.
.
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We can mite this equation more briefly if we designate its right-hand
side by yk(x)

Since in the flows
the contour K must
along an imovable
fashion

—

Y= @d (4)

under consideration the di ection of the velocity on
J

coincide with the vector t, the condition on the flow
fixed frictionless wall may be mitten in the following

(7)

at y= yk(x)- The condition (5) must be added to the system of equa-

tions (2) as a qualifying boundary condition. Much work has been dedicated
to the investigation of solutions of the system (2) subject to the con-
dition (5). Of these we sre interested here only in those in which the
flow is supersonic, i.e., flows at every point of which the following
condition

v>a (6)

is satisfied, where a is the local speed of sound

(7)

The investigations contained in these works divide in two fundamental
directions. The ftist direction is represented in works in which solu-
tions of the problem sre achieved with the help of numerical or graphical
processes permitting the step-by-step calculation of a system of parti-
cular values of the desired functions. (Works of Busemann, Kibelia,
and Frankl.) The fundsnental achievements of the methods represented by
these works consist of the fact that by their use many actual practical
problems riy be solved quantitatively of which the solution by other
methods would present great difficulties. In particular these methods
solve thoroughly corner-nonpotentialproblems. The chief defect of
these methods is that the solutions obtained sre numerical so that it
is impossible to obtain a general.qmlitative estimate of the phenomena
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under investigation. The second direction is represented by the works
of Meyer, Ackeret, Frandtl, and Busemann, which are confined to a culti-
vation of an exact theory of trrotational flows. The results are based
on the fact that in the case where vorticity is absent the character-
istic system of differential equations (2) admit of integrable combina-
tions. This theory leads to series of approximate results of any desired
accuracy, giving a complete qualitative and quantitative picture of the
flow. Since our investigation is mostly connected with the theory of
irrotational flows we give below a brief introduction to the fundamental
methods and results of this theory.

We introduce the stream function 4 defined by the following relations

(8)

As is well known from equations (2), (7), and (8) the following relations
follow without difficulty

Pe—=
~k

V2 a2
—+—= to
2 k-1

(9)

(lo)

Where e, ‘o denote quantities which display the flow once and for all

as a function only of ~. With the help of equations (2), (9), and (10)
it is easy to obtain the two equations

.

.

avy ZMx
—-— = i-l
ax by

(11)

.

.
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(s,2.VX2)Z5+ (a2. vy2)5X -vxv{~+g.o (12)

where Q denotes a quantity defined as

[

dtO ~2
Q p—- 1dlnf3=

dq k(k - 1) d$
(13)

. .

Equations (11) and (12) represent linear relationships between the first
partial derivati.yesof the functions Vx, Vy with respect to x and y.

.

Since every flow under consideration is supersonic, the entire region.
of the flow may be covered by a pair of fsmilies of characteristics. The
differential equations of these characteristics are obtained easily by

. the use of equations (n) and (12). For one fsmily of characteristics,
which we shall agree to call the first family, we obtain the equations

d(v cos p) + m@(v

and for the other,
have the equations

d(v cos ~) + mld(v

V2COS2$ - a2

which we shall agree to call the second family, we

dy = m2dx (16)

(a2 - v2cos2p)~ + v2sin f3COs P ~ ~17)
Sinp)=a

v2cos2$ _ a2

Here ml, ~ denote the following expressions

-v2sin ~ cos ~ + a
ml = v

a2 - 2cos2p
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.v2sin p Cos p -
m2 =

a~v2 - a2
(19)

a2 - #-cos2@

We now consider a supersonic stream with constant hydrodynemical
e.lernents(i.e., functions v, /3,p, p, a). We shall call this flow the
undisturbed flow. The values of’the functions v, p, p, a in the undis-
turbed stream will be denoted by w, pO, po, ~ respectively, and

the ratio w/so by M. Since the stream under-consideration is super-

sonic, M>l. We shall choose the direction of the velocity of the
undisturbed stream to correspond to the direction of the x-axis.

We assume that the undisturbed stream strikes an immovable, fixed,
frictionless wall (contour K), inclined in such a manner that in flowing’
around this wall the stream never detaches from it and-remains super-
sonic everywhere. We mdy distinguish two cases of flows of this type.

Case I.- The contour K is situated in such a manner that the
condition

pk(o) <0

is fulfilled. in this case, as is well known,
weak discontinuity OC (figs. 2(a), and 2(b))
and dividing the entire flow in two psrts. On

there appears a
proceeding from
one side of the

(20)

curve of
the origin
curve of

weak discontinuity OC extends the region containing the undisturbed
stresm and on the-other the region of flow around the wall. In the region
of flow around the fixed frictionless wall the hydrodynamical elements of
the stresm, generally speaking, are not constant but vary. In what fol-
lows we shall call this part of the s.tresmthe disturbed stream. In the
entire region of the flow under consideration the functions v, ~, p, p, n
are continuous but theti partial derivatives with respect to x and y
(all or only some) exhibit jump discontinuities, at least on the curve of
weak discontinuity OC. The sane curve OC appears ‘asa characteristic of
the second family since the hydrodynamical elements of the stresm are con-
stant. On this line the following relationships will hold in the entire
region containing the stresm

.

.

~2 %32to=T+—
k-l”

(21)
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where 00
.-

From

i.e., the
. tion (24)

equations
we obtain

satisfied

e = 60

denotes a quantity defined as

Po
efJ=—

Pok

7

(22)

(23)

equations (13), (21), and (22) we easily obtain

<1=0 (24)

flow under consideration is irrotational. By virtue of rela-
the right-hand side of equations (15) and (17) vanish and these
can be integrated. As a result of h%egration of equation (15)
the relationship

j3+q(v) = constant (25)

along any characteristic of the first family, and as a result
of integrating equition (17) we have

P -9(V) = constant

satisfied along a characteristic of the second
function defined as

(26)

fsmily. q(v) denotes a

.
Since on the curve of wesk discontinuity OC the quantities v and f3have
the values w and O, respectively, the folllawingrelation is satisfied
along every characteristic of the first family intersecting this line.
and consequently in the entire region of the disturbed stream:
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p +ql(v) =(J)(W) (28)
.

IYom equations 16, 26, and 28 it immediately follows that the char-
acteristics of the second femily (the curve OC being smong these) are
straight lines since along each of these characteristicsthe hydrodynsm- ‘-”
ical elements are constant.

Making use of these circumstances it is not difficult with the aid
of equations 28, 26, 22, Z?I.,16, 10, 7, and P to construct expressions
for the functions v, ~, p, p, a in the region of the disturbed flow.
However, the construction of these expressions is not of great interest
since our chief interest is centered on the construction of an expres-
sion for the pressure on the contour K which may be accomplished without
the use of these expressions for the hyhodyn smi.calelements of the flow.
Actually equation 28 allows us to determine the velocity v as a function
of the angle of inclination of this velocity with the x-axis at every
point of the region fild-edby the disturbed flow. Since by virtue of

.

equation > the angle of inclination of the velocity with respect to the
x-sxis is a given function of x on the contour K there is the ~ossibility .
of using equations 22, 21, 10, 9, and 7 to determine the pressure p as a
function of- x on the flow around a contour. If we ‘limitourselves to
the consideration of slightly disturbed flows, i.e., flows whose hydro-
dyns.mi.calelements differ but little from the hydrodynsmical elements of
the undisturbed flow, the expression for the pressure on the flow around
a contour K may be written in the form of a series. This series has the
form

[
p = Po + q alpk(x) ~ a2pk2(x) + a3~k3(x)+a@k4(x)‘.” ● ●

1
(s)

.
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Ii
POW2 pokM*

q=—-
2 2

al . 2(M2 - 1)
-1/2

( ).2= (M2_1)-2*_a2+.9#

a~ = (M2.-1)

[

1‘7/2 ~ - ~2 + ;(k + 1)M4+ -~-7k+&2@:k+l M8

3 6

l~+20k - 8k2+3k3M8 +-21- ZQk + 3k2 + 2k3 MIO

12
. . . . . . . . . .

that
Case II.- The
~Zowing

6 J

M6 -I-

+3+2k-k2M12

48 )
. . . . . . . . . . . . . . . . . . . . . . . . . ● ☛☛

flow sround a contour K is situated in such a manner
inequality is satisfied

i3k(o) >0 (30)

In this case, as is well known, a lime of shock discontinuity OD appears
(fj.g.3) proceeding from the origin O and dividing the entire flow under
consideraticm in two parts. On one side of this line is the region of
the undisturbed stresm and on the other the region in which the fluid
flows around the fixed frictionless wall. Just as in case I we call the
flow h the region in which the stream around the fixed frictionless wall
is accon@ished the disturbed flow. In the present case, in contrast to
case 1, the functions v, ~, p, p, a exhibit Jump discontinulties on the
shock-line OD.
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In the region of the disturbed flow these functions must satisfy
not only eqpations 2, 5, and 7 but also the dynsmical conditions across
the shock line. Considering the flow to be only slightly disturbed, these
conditions may be written in the following form

where

# a2 ~+ %2~+—-= —
k- 1 2 k- I

v= w(l+b~+b@2+b@+ b4~k+ ...)

bl=- (M2 - 1)- ~

b2=-
(

(M2 - 1)-2 ~+ ~ M!)

(31)

(32)

5+5k - k2+k3M8+-~-k-

)

3k2 + 3k3 @O

26 48

. . . . . . . . . . . . . . . . . . ● ✌✎✌
✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎

0

~=
l+2#+Z@ 4+... (33)

.

3k2 - 11*+5# +&J&8
2k 32
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where

k(k2 - 1) M5(M2 - 1)- ;23= ~

14 =
k(k2 - 1) @ (M2 -

[1)-3 4 + 2(k - 2)M2 - (k - 1)~]
12

. . . . . . . . . . . . . . . . . . . . . . . . ..0.

.

w—=eo+elj3+e#2 +.. .
dx

(*)

where

k+14 2
=—M(M -1)-2‘1 ,

4-

. . . . . . . . . . ,.

Condition 31 shows that, disregarding the presence of jump r3iscon-
tinuities in the functions v, j3,p, p, a, dquation 21, just as in case I,
is valid throughout the entire region filled by the flow under considera-
tion. However, condition 22 is not, generally speaking, fulfilled in
the case now under consideration. However, there is the possibility of

.’ speaking of satisfying this condition approximately. ~ fact, consider
equation 33. Its right-hand side does not contain terms in the first
snd second powers of ~. Therefore, for slightly disturbed flows, equa-
tion 22 may be.regsrded as approximately satisfied on the he OD and con-
sequently throughout the entire region filled by the flow under considera-
tion. Horn this it follows that in the region of disturbed flow equa-
tion 24 may be regsrded aa approximately satisfied, which means that
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equations 25 and 26 hold on characteristics. For values of ~ and v
near O and w, respectively, equation 28 may be written in the form
of a series

v= W(I + bl’~ -i-b2’~2 -1-b3’~3+ b4’~4 + . . .) (35)

where

bl’ = .(M2 - 1)- ~= bl

b2’ = -
(

(& - 1)-2 ~+ + +) = b2

7
b3r = -(M2 - 1)- ~

[

1 2+;(k-A+–M I)M4 + 1Zk2-5k +3@

6 2 12

(

-5~+5M2+ -17+ 29k M4 +3-bu’ = -(M2 - 1) 19k i-16k2

24 8 24 24

)

3-2k-~k2+ 4k3M8+-~+&-~2 +2k3~m

32 96

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K+’

. . .

Compsz~ equations 32 and 35 we see that for slightly disturbed
streams the first may be substituted for the second with good approxi-
mation. Consequently, for slightly disturbed flows, equation 28 wiU. be
approximately satisfied along the Une OD. Since, on the other hand,
along each characteristic of the first family equation 25 is approximately
satisfied, equation 28 will be approximately satisfied throughout the
entire region of disturbed flow. The approximate expressions for the
functions v, p, p, p, a are constituted exactly like the accurate e~res-
sions for these functions in case 1. Substituting the approximate expres-
sion for the function p in the right-hand side of equation 34, we obtain

.

.
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w
a differential equation of the first degree for the approximate deter-
mination of the form of the shock line. Summing up our considerations

i we csm deduce that the accurate results contained in case I can serve as
approximate rdsults for case II, and further that expression 29 can serve
as an approximate expression for the pressure on the flow around a contour
in case II. These same considerations show that there is no sense in cal-
culating all terms in this expression. It is sufficient to limit ourselves
to the first two or three terms.

From all that has been said about cases I and II one may conclude
that the form of the contour K may be made up in such a manner that art-
fully constructed shocks may be caused to appear in the region of’flow
around the fixed frictionless wall. In such cases when we pay attention
to this phenomenon, the results we have obtained are valid, not for the
entire region of flow around the fixed frictionl.esswall, but only for
that psrt in the neighborhood of the front side of the flow around a
contour. The fundamental problem of the present work is the construction
of approximate expressions for the pressure on the flow sxound a contour.
in case II, with the calculation of the circulation of the flow occasioned
by the presence of the shock discontinuity OD. In spite of the fact that
in the case of the presence of circulation it is tipossible to integrate.
equations 15 and 17, there is the possibility, however, of making up such
combinations of differentials from equations 14, 15, 16, and.17, adding
to these equations expressions for differentials of the stream function, I
that with the aid of these combinations it is possible to construct expres-
sions which we shall integrate. Investigations concerning the preceding
construction constitute the contents of the following section.

PART II

Suppose we have a flow corresponding to case II of the preceding
section. Assune that in this flow the hytiodynsmical elements in the
region of the disturbed stream tiffer infinitely little from the hydro-
dynsmical elements in the region of the undisturbed flow. We revsmp
somewhat our notion of the region of dikturbed flow. Shortly before we
agreed to apply this nsme to the region bounded by the curvelinesr
triangle -e up of the curve 0C2 (contour K), the shock line OC1, and

the characteristic of the ftist family C1C2 emerging from the lowest

point of the contour K (fig. 4). Taking into consideration eqgations 5,
14, 18, and 34, it is not difficult to conclude that with the assumptions
made just now relative to the hydrodynamical elements the curvilinear
trfsngle 0C1C2 differs infinitely little from the isoceles straight-line.

. triangle 0’Cl’C2’ (fig. ~) where the equal sides O’Cl’ and C1’C2’ are

psrallel to characteristics of the second and first fsmilies in the
.



14

undisturbed flow.

that they all have
as many degrees as
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As for the functions Bk(x), ~, v, p, p, a we assume
#

the properties of differentiability and continuity to
may be necessary to insure legitimacy of operations “

which are perfomed upon them. Moreover, we assume that in the flow
under consideration the infinitesimal quantities ~k(x)) ~k’(x)> ~k’’(x)s

j3,v-wJp- poyp-poya-ao have the same order of magnitude.

Taking this last group of infinitesimals as fundamental (havi~ unit
order of magnitude) we shall agree in what follows to adhere to the fol-
lowing system of notations appearing in Investigations involving infinitely
small quantities. By =M (m being any positive titeger) let us denote

an infinitesimalwhose order of magnitude is not less thsm m. Clearly
such a mode of notation does not exclude the possibility of s&eral dif-
ferent infinitesimals being denoted by the ssme symbol, and, vice versa.
The sane infinitesimalmay be denoted by several different symbols. Thus,
for example, if am infiniteshal a is denoted by 64, the infinites-

imal 2a may also be denoted by G4, and, moreowr, the infinitesi-
mals a and 2a may be denoted by E3, @ El.

On an arbitrary characteristic of the second or first fsmily the
equation

d~= pV(Sill@X -

will be satisfied by virtue of equation

COS ~dy) (36)

8 throughout the entire region
filled by the flow.- Eliminating- dx and dy from equations 14, 15,
and 36 and taking into account formulas 13 and 21, we arrive at the
equation

d(v cos p) +m2d(vsinp) = Old In 0 (37)

which is satisfied on any characteristic of the first family. Here %

denotes the quantity

[
a2 v2sin p cos ~ - (v2COS2~ - 1a2)ml

all=

k(k - l)v(v2cos2p - a2)(ml cos ~ - sin ~)
.

.
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On the other hand, having the integral 25 of the equation

k

d(v cos j3)+m@(v sin ~) = O (39)

it is easy to find en integrating factor L1 of this equation, such that

after multiplying by L1 it may be written in the form

d~+cp(v~=o . (40)

In order to determine ~ we have the obvious relationship

from which we obtain without difficulty
.

Ll(m2 cos @ - Sti p)vdp = *

consequently

L. =
1

-L
v(m2 cos j3- sin p)

(42)

(43)

If now we multiply both sides of eqyation 37 by Ll, this equation takes

the form

where HI denotes the quantity

=1 (V2COS% - a2)ml - v2sin @ cos f3
=

k(k - 1)V-2

(44)

(45)



We denote by H1o the value of HI at v . W, p = 0. We have

%0 = ~(k

1 (M2 . #2
- 1)M2

-r”

w

(46)

Equation 44 may be rearranged in the following fashion

d[~ + ;(vj = Hlod Ins+ (Hl - Hlo)d In ~
e. e.

(47)

Now choose sm srbitrary point S in the region of disturbed flow and lead
a characteristic of the first fsmily through it. We denote the point of
intersection of this characteristicwith the shock line by A (fig. 6). .
Integrating both sides of equation 47 along the above characteristic from
point A to point S we obtain

(~s+Q(vs) - ~a-q(va) = Hloln
es ‘)f9a

~-
—+h e.

(Hi- HIO)dl.n&
As

(48)

respectively, the values of p, v, 0 at

the point S and pa, val ga denote the values of these quantities at

the point A. Taking account of equation (32) we have

We introduce the
in the following

‘al = W(I + bfia

(49)

quantity Vd defined with the help of the e~ansion 35
fashion

.

3i-b4’~a4+ . . .)+ b2~a2 + b3~~a (cf eq. (35) -Tr.)

(x) -
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By this definition of the quantity v- we have

17

pa + q(v~) = (p(w) (51)

With the help of formulas 49, ~, snd 51 we resrrange the expression
~a+~(va) tithe follo~~

pa + q)(v~) = pa + Q(VSJ + q(v&J - q(v~)

=Cp(w) +q(vJ -Cp(val)

[
=q)(w) +Q’(w) (v~ -w) - 1(v--w) +

1 1,

z [ 1cp(w)(va -w)2-(vapw)2 +...

[ 1=~(w) +~’(w) (b3 - b3’)~a3 + (b4 - b4’)~a4 +

*“(w)bl(b3 - b3’)Ba4 + ~~

Calculating q’(w), q“(w) we obtain

Cp’(w)=-~
Wlq

2b2
Cp’’(w)= —

#b, 3

(52)

(53)

(*)

.

.
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Using formulas 52, 53, and 54 we easily find

NACA TM 1394

(55)

Now pass a stream line through the point S and denote by P the point of
intersection of this line with the shock line. Since the stream function C
is constant along this line we have

es = ep (56)
.

where ‘P denotes the value of 0 at the point p. Taking logarithms of .

both sides of equation (33) we obtain

Since the values

in what follows,

l.n
e
—= 2+3+ 24’p4+ 25’p% . . .
00

of

we

using formulas

the coefficients 24’, 25’, . . . wi21 not be needed

shall not calculate them.

(%) ~d (57) we easily see that

es ea
3- j3a3) + 24’ (spJn In — = 23(pp 4 - paq + E5—-

e. 00

(57)

(58)

where Pp denotes the value of ~ at the point p. Assuming tkt the

mean value theorem is applicable to the integral arising from the rlght-
hand side of equation (48), we easily findl

lInstead, take a slightly more general assumption admitting the part
AS of the ctiacteristic under consideration to be divided in the same
finite number of puts in such manner that on each part the mean value
theorem can be applied to the integral under investigation.



NACA !BJ1394 19

(In consequence of this equation one must keep intind that al - E1o= El).

Here H1 denotes the value of H1 at some point on the characteristic

under consideratio-nbetween the points A and S.

Using relations (55), (58), and (59) we write equation (48) in the
following form

ps + Cp(vs) = q(w) - =$b3 - b3’)~a3 +

[

~(b3 - b3’) - $(b4 - 1b4’) ~a4+
b12

H10Z3(~p3 - Ba3) + H10Z4’(BP4 - ~a4) +

Z3(X1 - HI.0)(Pp3 - pas) + E5 (60)

We denote by B the intersection of the characteristic OZ the first
fsmily under consideration with the contour K. Applying formula (60) to
the point B (which is possible, since the point S was chosen arbitrarily)
we obtain

~b + ~(vb) = P(W) - $(b3 - b3’)~a3 +

[

~(b3 - b3’) - $(b4 -

1

b4’) ~a4+
b12

4- J3a4)-1-H102=j(Po3- Ba3)+ HIoZ4’ (Bo

(61)
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where ~b, Vb denote, respectively, the values of p and v at the

point B

We

formula

and PO denotes

now proceed to

(6o) we have

the value of 13 at the point O.

the derivation of an expression for pa. From

Ps + q(vs) =q(w) +E3 (62)

From equation (62), using formfla (35) we obtain

Vs = W(l +

and denoting by ~s the value

using formdas (19) and (63)

b~s + b2~s2) i-e3 (63)

.

of m2 at the point S we obtain, by

(64)

Analagous to the derivation of equation (47), which holds on character-
istics of the first fsmilyj we may derive equation

(65)

which is valid on characteristicsof the second fsnily. Here H2 denotes

the function defined as

(V%oszp - aa)nq - v2sin p cos p
‘2 = (66)

k(k - 1)$

and H= denotes the value of this function at p = O, v= w.

“
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i
Now pass a characteristic of the second family through the point S

and denote by Q its intersection with the contoux K. Integrating both

. sides of equation (65) along this characteristic from the point Q to the
point S we obtain

Pa
[ 1( )J‘q-Pq-~(%)-d~q) ‘%)-+@II~+ (H2- H~)dln$

QS

(67)

where Pq3 vq~ eq denote respective the values of ~, v, 13 at the

point Q. Since the contour K is a stream line we have

% =
Jo)

where E)(0) denotes the valu;bf 6
mean value theorem can be applied to
hand side of equation (67) we easily
(57), - (68)

fig
[

- Pq - T(vs)

Applying formula (62) at the point Q

Pq + dvq) =

Eliminatim (p(w)
lowing equation

(68)

at the point O. Assuming that the
the integral arising from the right-
find, with the aid of formulas (~),

1-ql(vq) = Es (69)

we hawe

q(w) + =3 (70)

fron equations (62) and (70) we arrive at the fol-

Pg - 13q+ [d%) - dvq) = .C3 (71)
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Families (69) and (71) give

Ps=Pq+~3

On the shock line we take an arbitrary point F (fig. 7) and pass
through it a characteristic of the second family in the region of the
disturbed flow and we denote by Pf, mm, respectively, the values 13

and m2 at the point F. APP~fw formtia (64) at the point F we obtain

m2f = (73)eo + 2elPf + ‘2

We denote by
()
~ the slope of the tangent to the shock line at the
.dx f

point F. From equations (34) we have

(74)

comparing form-s (73) and (74)
second fsm.ilypassing through F
make an infinitesimal angle with

we see that the characteristic of the
and the shock line at this interjection
each other moreover, if

pf>o (75)

the slope of the characteristic of the second family fs greater than the
slope of the shock line at the point F.2

21t is easy to show that if the shock line is unbroken and mmeonr
condition (30) is satisfied the inequality p < 0 is impossible on this
line. As a matter of fact, in the opposite case the shock line is broken
since with ~ <0 condition (34) must
dition in virtue of Tsemplents theoren

dy
—=-(eO-efl+
dx

be replaced by the following con-

2e# - . . .)
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w
Denoting by L the intersection of the characteristic of the second

fsmily under consideration with the contour K and by X2 abscissa of this
.

point, we have

(76)

Let pl

and (76)

Applying
.

.

denote the value of p

and MacLauren’s formula

Pz = i3@)

at the point L. Using equations (5)
we obtain

+ ~k~(o)xz + C3 (77)

formula (72) at the point F we obtain

$f = Pz +~3

As a consequence of equations (77) and (78)

Pf = ~k(o) +pk’(o)xt+ ‘3

(78)

(79)

Since the point F was chosen arbitrarily on the shock line by use of
equations (74), (76), and (79) we can obtain the following differential
equation “forthe shock line

Q—= eo +’elpk(”) + %2
dx

(m)

Consequently the equation of the shock line may be written in the fol-
l@ting for-cl

Y=
[ 1
‘()+ ‘Ipk(o) x ~ 62 ( 81) ‘

●
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Appl@ng formulas (64) and”(72) to an arbitrsry point situated on the
characteristic of the second family EL we easily obtain the differential
equation of this line from the fo~wing

w—. eo + 2e1P2
dx

form - .

-1-E2 (82)

Employing formulas (76) and (77) this equation may be written

w—=
dx

Consequently the equation of
form

r

eo + =l~k(o) + ~2 (83)

the characteristicEL may be written in the
.

.

Y= YZ + ~0+ 2el~k(0)](x- XZ)+ G2 (84)

where yl denotes the ordinate of the point L.

On the other hand, taking account of formulas (3) and (76) we have

(85)

l%rployingformulas (~) and (76) we may write equation (&) in the form

Y=
[ 1
eo ~ aelpk(o) x - eoxz ~ e&I (86)

Applying formulas (81) and (86) at the point F and denoting by xf, yf

the coordhates of this point we obtati

.

.
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Yf =

Y-f=

!Rromeqyation (~) we

Replacing X2 in the

in formula (88) we obtain

Pf =

(m)
[ 1eo ~ elpk(o) xf + e2

[ 1‘o+2elpk(o)Xf-eoxz+G2
i

easily obtain
)

‘1
xl = ~xf~k(()) + =2 (88)

right-hand side of equation (79) by the expression

We denote by ~, ya

the coordinates of the

.

pk(o) +& f@0)9k’(0) +e3 (@)

the coordinates of the pOint A and by xb, yb

point B. Applying formula (89) at the point A
we srrive at the following result

(w)

We now express Xa fi te~ of xb. To this end, using formulas (14)

snd (18), we write the differential eqmtion for characteristics of the
second family in the following fashion

w—= -eo +
dx

(91)
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Employing formula (91) we write the equation for the characteristic AB
of the first family in the form

Y= yb - eo(x - %) + cl

Taking account of formula (3) we have

n=

consequently equation (92)

Y

f

Xb
taqk(x)dx= El

o

may be written

= ‘efJ(x- Xb) +

-L

(92)

(93)

(%)

On the other hand, equation (81) for the shock line may be written in
the form

Y= eox+el (95)

and applying formulas (94) and (95) at the point A we obtain

Ya = -eO(Xa - Xb) + el

Ya = e~a + El

I

From equation (96) we easily find

Xa ‘b=T+el

(96)

(97)

.“

.

.

.

.

.
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And consequently

Substituting this expression for pa

tion (61) and substituting PO for

we obtain

r.

Lbl

in the right-hand side of equa-

Pk(0) in the fundamental formula

[3elb3 - b3’

2eol bl
L

Enploying relation (35), we easily

27

(98)

l~(b4 - b4’) -~(b5 .

1

b3’) ~k4(0) -
b12

-1-

1
H1023 xbPk3(0)~k’(0) + e5 (9)

d

obtain from equation (39)

Vb =

{

W 1+ bl~b + b#b2 + b3%b3 + b4’~b4 + (b3 - b31)Pk3(0) +

[

b4 - b4’ - ~(b3 - 1 ~(b3-b3’)~k4(0)+b, b3’)~k3(o)+
bl -1 -L

(loo)

(5)
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.
Substituting Vb, ~b, Xb fOr V, ~k(X) and x, respectively, in

formula (100) we arrive at the follow~ final expression for the velocity
on the contour K:

.

V=w

{

DMqJIk(x) +b#k2(x) + b#~k3(d + b(~k4(x)+ (ba - bj’)~k3(@+

>~

q L J 1b3 - b3’ +H10Z3blX~k3(0)~k’(0) + ~5 (m)

.

We now proceed to the derivation of formulas from which the pressure
.

on the contour K can be calculated. Cleerly

Po
%2=k~

and moreover, on the contour K the following equation holds

P—= Jo)
~k

(102)

(103)

Bnploying formulas (7), (10), (21), (23), (102), and (103) we easily obtain
the following expression for the pressure on the contom K

(104)
.

.
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i.
On the other hand, by virtue of ecp.ations(5) @ (33) the following
equation holds

*

e(0)
—= 1+’ ‘3&3(o) + U@k4(0) + . . .
00

(105)

(3(0)
Substituting the expressions for v and —

eo
obtained in formulas (101)

and (105), respectively, h the right-hand side of equation (104) we obtain
after elementary transformations the desired formula for the calculation
of the

P=

pressure-on the contour K

[
Po + ~ afik(x) ~ a~k2(x) ~ a$k3(x) + a@k4(x)~ aldpk3(o)+

1a@k4(o) + a@k3(o)pk(x) + a~pk3(o)pk’(o)x + G5 (106)

where

213
ald = -2(b3 - b3’) -

k(k - 1)M2

k+l

(

~ 1 3-k ~

)
.—I#(M2 -1)-2-3+ -M +~M4

2

2X4
a= . -2(b4 - b4’) i-~(b3-b3’) -

k(k- 1)M2

(=#(1~2 -1)-5 k+l+5+Z -*2 M2+-10-3k+6k2- k311&+
2 4 8

9-7k2+2k3

)

@+-3+ k+3k2-k3118

16 32
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( bb2

)

a3d= (b3-b3’) ElM2b~-2b~-T +%

-4+3k+6k2-k3
#+3-

)

7k-7k2+3k3~

24 96

%1
ah = - —(b3 - b~’ + Hlo~3bl)

‘o

(“ )(k + 1)2’M~(M2 - @ -1 +3 - ‘M2 + ~M4=
16 2 8

.

.

For x = O the formula (1o6) takes the form

where a3’ = a3 + aid, a4~ = a4 + a2d + a~.

Formula (107) may be used for the calculation of the pressure on a
flat plate which is inclined at an angle ~k(0) to the undisturbed flow.

In order to single out of the right-m side of eqwtion (1o6) those
terms which depend exclusively on the presence of the shock in front of
the contour K, we add to the contouy K under consideration an uc 0’0
of finite length in such a manner that this wc is tangent to K at the
point O snd is psrallel to the x-axis at 0’ (fig. 8). Since the flow
around such an additional contour is accomplished without the appearance
of shocks (we suppose that the angle between the direction of flow and the
x-sxis and the derivative of this angle with respect to x are both
infinitely small), formula (~) may be employed in the calculation of the .
pressure on this contour. Comparing formulas (29) and (1o6) and denoting
by Lp6to~~ the pressure resulting from the presence of the shock front,

we obtain
.
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1a@k3(o)pk’(o)x + =5 (108)

We may, in turn single out of the expression for @~to~~ the term

depending solely on the vorticity caused by the presence of the shock.
In order to do this we add to the contom K(OC2) a straight-line segment

tangent at the point O (segment 0’0 in fig. 9). With the contour 0:OC2
a shock is formed, but the shock line O’C1 is straight so that vortex

formation is absent. Calculating the pressure on the portion 0C2 of the

contour 0tOC2, we obtain

P=
[

po + q al~k(x) + a2~k2(x) + a~k3(x) + a4~k4(x) +

13(o) + a2d@k4(o) + &@k3(0)@k(x) + E5a~~k (109)

compmin.g formtis (106) and (lo9) and denot~ by @rot the pres$~e

due to vortex formation caused by the shock, we obtain

&rot = qa~pk3(o)pk’(o)x+ =5 (no)

PART III

We now apply the results obtained to the calculation of the lifting
force and head resistance of a flat wing with sharp front and resr edges
placed in a supersonic stream having constant hydrodynsmical elements.

We place the origin O at the front edge of the wing and sxrange the
coordinate system so that the positive x-axis corresponds to the direction
of the velocity of the undisturbed flow and measure angles in the manner
used heretofore. Segment 0C2 connecting the front and rear edges (fig. 10)
will be called the chord of the wing as in the theory of wihgs. The length
of t~is curve will be denoted by T! smd the angle it makes with the x-axis

●

by ~.

.
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The form of the wings we are investigating is defined by a pair of -.

contours like that investigated in the preceding section, possessing a
pair of comnon points 0, C!2. Comparing ordinates of points on these
contours having the same abscissa, we call the upper contour Ku that

.

contour of which every point on the ordinate is greater than the corre-
sponding point on the ordinate of the other contour, which we ca~ ‘the
lower contour Kz. The function ~k(x) for the upper contour we denote
by p~(x) and for the lower by ~kl(X).

We choose an arbitrery point A on the chord of the wing and denote
the distance OA by t. Through A we pass a straight line perpendicular
to the chord ‘ofthe wing and “denoteby ~ and At, respectively, the

intersections of this straight line with the upper and lower contours.
With the point Auwe associate a unit tangent vector ~ and at the point AZ

a unit tangent vector tt. The vectors ~ and tz will be directed in such

a manner that their projections on the direction 0C2 are positive. We
denote by Pu and 132,respectively, the angles these vectors make with
the vector 0~. Clearly 13u, PZ maybe regarded as functions of t.

We denote by puo ~d f3Zo the values of Pu sad “pz at the point O

and the values of the derivatives of pu and BZ with respect to t

at the point O by puo’ and f3zo’.

The abscissa x of Au may be calculated from the formula

!

1’
t

x= tcos~-sin~ tan j3udt
o

and that of the point At from the formula

f

t
x= tcos~-sin~ tan pzdt

o

(m)

(H2)

The value of the functions ~W(x) at the point ~ is determined by the

relation

-.
Pkl+) =p-k$u (113)
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and the value of the function ~kz(x) at the point Az by the relation

Moreover we have the relations

J T
tau ~udt = O

0

J
T

tan J3zdt= O
0

We assume that ~ and d.SO flu and 92 and

respect to t are infinitesimal qmtities.
(13.6)we easily obtain

(114)

(u6)

other derivatives with

From equations (IJ.5)and

Proceedir@ now to the calculation of the lifting force
of the wing under consideration, we remark that on the
wing a shock appe=s when and only when

F+puo>o

and at the bottom side when and only when

E+pzo<o

(lJ_7)

(IL8)

and head resistance
top side of the

(120)



34 NACATM 1394

We introduce the quantities alu, a~, a3u, a4u defined as follows

(Ml)

a4u = ah
J

% .ati.

In an analogous way we

a3u = ah = 0 ‘f F+’13ZO<0 (122)

define the qwntities all, a2Z, a3Z~ a41

azz = a2d
if ~+p~o<o

a3Z = a3d 1

(123)

a42 = a4d J
all = a22 = a32 = a4z = 0 if p++o?o (124)

Denoting by pu the pressure on the upper contour ~ and by PZ

the pressure on the lower contour K2 we easi~ obtain, with the help of

fo~tis (106), (121), (122), (123), (124)

Pu =
[

PO + q alp~(x) + a21h2(x) + a=jP~3(x) + a@w4(x) ~.

1a@~3(o) ~ a~pku4(0) ~ a3u&u3(o)pku(x) ~ a4upku3(o)p~’(o)x ~ ~5

(125)
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Pz [= M + q ‘al~kl(x) + a#kZ2(x) - a~kZ3(x) + a4BkZ4(x) -

1alZ~kZ3(0) + a2@kZ4(0) + a3Z~kZ3(0)~kZ(x) + a4Z~k~3(0)~kZt(0)x + E5

+
Let P denote the

acting on a unit length

(u26)

resultant vector of the hydrodynamical force
of the wing under consideration. We have then

(lq’)

where ~ denotes a unit vector normal to the contour of the wing and
directed inwards.

We introduce the

and the dimensionless

cients are defined by

dimensionless coefficient of the lifthg force ~

coefficient of head resistance ~. These coeffi-

the formulas

(u28)‘Ycy=—. qT

P
CX=A (la)

qT

where
+

‘Y and Px denote the projections of the vector P on the

x- and y-sxes, respectively. Mom fo=as (1~), (128), (~) we have

(ly))
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where Z denotes

l.as(l-u), (u))
and (131) after a

where

cy~ = -2.@

the abscissa of the point C2. With the aid of formu-

(u3), (u4), (u7), (118), (125), (126), (In),
few element~ transformations we obtain

c!y~= (al - 2azJ ~3- %(B + 13uO)3- %2(B + P20)3 +

.

.
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-w where

%2 = ‘J’+ %Jo’ @2+ ~z2)”

%3= * /’.’ p - F@’ +;J” (%3 - qd’

.

.

Let us consider a numerical exsmple.

Suppose

k= 1.405, M= 1.5, Po = 1.033 kg/cIi12 (134)

Then

polw
q=~= 1.633 kg/m’

al =

a2 =

a3 =

ak =

2(M2 - 1)-1/2= 1*789

(M2- ~)-2(2- ~2+~Q~~4) s 2a~6

(M2- 1)-7/2(1.333- 21i2+4.c0&4 -1.81*+

1

(135)
o.Wm8) = 3.082

(M’- ~)-5(0C6667 -0.666~2 + 5.61&4 -3.82.@+

2.965M8 - 007840Mm+0.0799@2) = 8.290
J

(Equations continued on next page).*

.
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au =

a2d =

a3d =

ah =

NACA TM

-7/2(.0.3333 + 0.265W2 -1.~x4(M2 - 1) 0.03272M4) = 0.2766

#(M2- @(-I.~3+1.317M2-o.64 ;I.M4+o.045@+

o.0485~8) = 0.4448

1394

1
..

()135cone.

ti(M2-1)-5(-0.4008 -0.002~2+ 0.3@j#-0.M@=&) .0,3318

0.361@(M2 - 1)-5( .l+o.797@ -

Let us take as the functions ~W ~z

@u = .x+:

Pl=o

Moreover we assume that

~<o

0.09813M4) = 0.9035

t

}

.

(ly5) ‘

(137)

T!heform and position of the profile of the wing, determined by equat-
ions (1X) and condition (137), is shown in figure 11. It is easily
seen that the straight line s~s2 drawn perpendicular to the wing through

its mid point is the axis of symmetry of the profile under consideration.
~om equations (136) and condition (137) we have

.
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.
Consequently,

.
alu = alz = ald = 0.2766

a~ = a2Z = a2d = 0.4448

a3u = a32 = an = 0“3318

a4u = a4Z = au = 0.9035

*

.

using form-d-as(132), (133), (135), (136), ~d (139) we optafi

%= (3 )-2afi-~a~2+ ~al-6a3B3+

( 56

)

-4
~a2- ya4+%d+%.dP +=5
3

= -3.57@ - 3*06@2 - 14=3@3 - 82s73154+ ● s “

()%=ya$2+ 4%P3+:+$a3P4+’5

= 5.963~2 + 9.184~3 -I-40. @4 + . . .

Let

F=-$ 1

(139)

(140)

(141)

T = 100 cm
J
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Then

CY = 0.2936
1

q = 0.04168
I

(142)

Knowing Cy, Cx, T, and q, we easily obtain

‘Y = qT~ = 4799 Q/m

Px = qT& = 6.81 kg/cm
1

(143)

SUMMARY

Tn.the present work the problem of a flow of stresm of ideal gas
around a thin wing at small angles of attack is investigated, this stream
being supposed to be twu-dtiensional, stationary, supersonic and deprived
of heat-conduction.

In the initial park of the work, the problem is stated, and the well-
known results obtained by Ackeret, Prandtl, and Busemann are cited. These
results, as known, are obtained on the basis of the potential supersonic
stresms theory, which is founded on the existence of integrable combina-
tions of characteristicsof differential equations concerning this problem,
emd in which some peculiarities of the dynamical conditions on the line of
the shock wave are utilized.

In the second part the approximate solution of the problem is given
with an allowance for vortex-formation caused by the change of entropy
along the shock wave, when receding from the leading edge of the wing,
near which this shock wave is formed. For this purpose differential
equations of characteristicsnon admitting integrable combinations are
to be dealt with. The solution is obtained by means of a special method,
which enables us to find the approximate integrable combinations of dif-
ferential equations of the characteristics. The obtained combinations
let us receive the approximate formula of pressure in any point of the
contour of the wing investigated. From this fozmmla the term is easily
segregated depending exclusively on the vortex formulation, caused by
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the change of entropy along the shock wave. The characteristic dis-
tinction of this term of the obtained formula of pressure from the other
ones, is that it includes the curvature of the wing contour at the leading
edge and the distance from this edge up to the element of the wing for
which the pressure is calculated.

In the th.irdpsrt of the work the expressions for lift and drag
coefficients of the wing are given, on the base of the formula of pres-
sure obtained above. In conclusion a numerical example is stdied.

Translated by R. Shaw
Institute of Mathematical Sciences

REFERENCES

1. Meyer, Th.j. her zweidtiensionalel?ewegungsvorgHngein einem Gas,
das mit UberschalUgeschwindigkeitstrbmt. Forsch.-Arb., Ing.-Wes.,
62, 1908.

2. Prandtl, L., and Busemann, A.: N&brungsverfabren sux zeichnerischen
Ermittlung von ebenen Str6mungen mit hrschallgeschwindigkeiten.
Stodola Festscbrift, Zi!rich1929.

3. Ackeretj I.: Gasdynamik. Handbuch der Physlk, 19, B. VII.

k. Busemann, A.: Aerodynsmischer Auftrieb bei ~erschallgeschwindigkeit.
Luftfahrtforschung, 1935.

.

w



NACA TM 1394

.

.

Y

7

,/ “
.R x

o

.

.

Figure 1.

.

●



NACA TM 1394

.

.

43

Y

o

c

m

.

Figure 2(a).

Y

c

x

Figure 2(b).

●



44 NACA TM 1394

,

o
.

*

Figure 3.

Y
c1

C2

o I
Figure4.

.

.



NACATM 1394

.

45

.

.

Y

c,’

C2’

o’

Figure 5.

YI

Figure 6.

.

.



.

.

Y

c

c,

F

...

x

.

.
Figuxe 7.

Y, cl

o’

.

●



.

.

NACATM 1394

. .

47

.

●

3
o’

I
q

x
nu

Figure 9.

t“

. Figuxe 10.



.

Y
z -

s,/
/’

--J x
o

/1
/1 C2

/;2

Figure 11.

.

●

.

NACA-LangleyField,VA.


